Convolutional deep maxout networks for phone recognition

نویسنده

  • László Tóth
چکیده

Convolutional neural networks have recently been shown to outperform fully connected deep neural networks on several speech recognition tasks. Their superior performance is due to their convolutional structure that processes several, slightly shifted versions of the input window using the same weights, and then pools the resulting neural activations. This pooling operation makes the network less sensitive to translations. The convolutional network results published up till now used sigmoid or rectified linear neurons. However, quite recently a new type of activation function called the maxout activation has been proposed. Its operation is closely related to convolutional networks, as it applies a similar pooling step, but over different neurons evaluated on the same input. Here, we combine the two technologies, and experiment with deep convolutional neural networks built from maxout neurons. Phone recognition tests on the TIMIT database show that switching to maxout units from rectifier units decreases the phone error rate for each network configuration studied, and yields relative error rate reductions of between 2% and 6%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phone recognition with hierarchical convolutional deep maxout networks

Deep convolutional neural networks (CNNs) have recently been shown to outperform fully connected deep neural networks (DNNs) both on low-resource and on large-scale speech tasks. Experiments indicate that convolutional networks can attain a 10–15 % relative improvement in the word error rate of large vocabulary recognition tasks over fully connected deep networks. Here, we explore some refineme...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Improving language-universal feature extraction with deep maxout and convolutional neural networks

When deployed in automated speech recognition (ASR), deep neural networks (DNNs) can be treated as a complex feature extractor plus a simple linear classifier. Previous work has investigated the utility of multilingual DNNs acting as language-universal feature extractors (LUFEs). In this paper, we explore different strategies to further improve LUFEs. First, we replace the standard sigmoid nonl...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014